
Understanding and Achieving 
Observability - A Primer



Introduction

Synopsis

Observability is the talk of the town in the DevOps community these days. While IT veterans argue 
what the definition of observability is, it's important to note that observability does not exclude 
monitoring. In fact, observability is a superset of testing and monitoring enabling you to have a 
holistic view of your application's behavior and health at any given point of time. This white paper 
aims to discuss the definition of observability, its evolution, what it means from person to person, 
and how to achieve it.

As the role of DevOps evolves from being 
reactive to operational issues, to being 
able to proactively identify issues, it's 
critical to prepare systems for e�ective 
monitoring and correlate data from all 
available sources. Here we take a look at 
yet another evolving trend on making 
systems observable. 

What is observability?

Monitoring

Observability

Testing

It's hard to define an evolving buzzword as each segment of the industry associates di�erently to it.
For the purpose of this article, we define observability as: 

“A state of readiness of the DevOps team to instantaneously identify unexpected application 
behavior and pinpoint its root cause.”

The utopian dream of any DevOps team is to have no unknown issues in their production environment.
When an issue is identified, DevOps teams try to understand why it happened and include it as a test
case in the testing process. This is commonly known as shift-left testing. The shift-left testing is 
important for DevOps to stay ahead in the competitive landscape.

With the growth in monitoring and automation tools, DevOps teams are able to "shift-left" their quality
assurance (QA) and testing process. By making systems more observable, DevOps can easily 
understand how to quickly shift-left any new problems.  

Shift-left Testing and Observability



Setting Goals for Observability

The monitoring needs of an application/service largely depend on its scale and size. A small-scale 
application may not need much monitoring, but as the scale and complexity of applications/services  
grows, so does its monitoring needs. This is why the scope of monitoring and observability depends 
on your organization's size and the scale of its services. 

For instance, a web hosting provider may only need website and infrastructure monitoring to notify  
its customers when 
its service becomes 
unresponsive, while the 
customers themselves 
may need log and the 
application performance 
monitoring to keep up 
with their SLAs. On the 
other hand, a more 
sophisticated payment 
gateway service that 
handles millions of 
transactions a day 
would need continuous
 monitoring of all transactions, logs, and business metrics, with smart alerting and response systems 
that can perform automated actions during failures and generate reports on the root cause analysis 
for outages.

Monitoring goals vary according to an organization's specific needs, which means the goal of 
observability depends on what you want to monitor; it may vary from person to person within your 
organization, and will di�er from other organizations' goals.

Website Maintenance Automation 
Testing

Shift-left Testing

Uptime Monitoring, Application Monitoring, Infrastructure Monitoring, Cloud Monitoring

SCALABILITY



Once you've defined your goals of monitoring and observability, you have to focus on refining your 
application life cycle process to achieve these goals. The three main areas of focus, commonly 
known as the three pillars of observability, are metrics, logs, and traces.

1. Metrics: There are industry standard metrics like Apdex, average response time, 95th percentile
lines, etc. to get you started. But you can go further by
adding business-specific metrics like scheduled jobs, 
third-party resource utilizations, key component usage, etc. 

2. Logs: Application and server logs can provide
request-specific details that cannot be captured
via standardized monitoring solutions. While app
server logs provide request-specific details, such as
user agent, features accessed by the users, 
and IP addresses, developers can add contextual
information about the state of the system.
Analyzing the logs tells the story of system
behavior over time. 

3. Traces: Debugging slow transactions requires
insights into time-consuming methods and external services. 
Traces provide a snapshot of the entire workflow of a transaction, making it easier to identify parts of 
the code that require optimization and fine-tuning. 

Achieving Observability: Guidelines

Once the goals of observability are established, it's time to align your monitoring solutions with 
them. Following these guidelines, you'll be able to get the most out of your monitoring solution and 
tailor-fit it for your needs. 

1. Use custom metrics: Monitoring tools have done a great job to get you started in troubleshooting
by capturing numerous industry standard metrics. However, they can only provide you an outsider's
perspective on your service. Defining and monitoring application-specific metrics may increase the
development workload, but it's definitely worth the trouble since it can provide deep context into the
different states of your system to help you understand what factors need to be tuned to achieve
optimal performance.

Site24x7 manages a lot of scheduled jobs to run customer-specific workloads. By monitoring the 
active jobs, we can determine how to scale the servers and improve resource utilization.Since the 
jobs are running as separate threads spawned across multiple servers, monitoring them is only 
possible by defining custom metrics.  

Traces

Logs

Observability

Metrics

Achieving Observability: Pillars and Pitfalls 



 

2. Analyze traces: Monitoring slow application programming interfaces (APIs) is a great way to 
increase observability of a system. Dig deep through traces to discover bottlenecks in the 
performance of your application/service. If a third-party is slowing you down, find ways to replace
or avoid the third-party service. If the database is slowing you down, consider upgrading or 
de-normalizing your database. If you have a distributed system, use a monitoring solution that can 
provide distributed traces. With distributed traces, you can not only optimize individual applications, 
but rework the communication flows and enhance the entire network.  

Site24x7 offers distributed tracing, allowing you to monitor code flows across application 
boundaries.   

Distributed Traces



3. Structure logs for data mining: While metrics and traces alone can give a holistic picture of your 
application's day-to-day operational behavior, they are limited to monitoring internal factors. Your 
application performance may be affected by external factors like user behaviors, which cannot be 
captured by metrics and traces.

This is where logging can provide context. Is a single rogue agent choking your bandwidth? Is 
application performance only taking a hit from certain geographies and browsers? Is the database 
constantly bombarded with the same query, the results of which can be cached? These questions 
can only be answered by analyzing logs. Log monitoring makes answering these questions a 
breeze. However, without the context of traces and custom metrics, the answers to these questions 
can very well lead your performance optimizations the wrong way. 

If you structure your logs so that they can be queried, associating them with traces and other met-
rics becomes more natural and relevant. Restructure your logs to include custom metrics and use 
traces to identify where logging is more relevant. Once you bring the context of custom metrics and 
traces into your logs, you will have a holistic view of your application's state. You can then feed this 
data to tools that can perform further analysis. 
 

In Site24x7, all service logs are pushed to our central log server from which we query and monitor 
infrastructure events. Site24x7's Log Management console provides querying functionality along 
with trend analysis, which makes it easier to correlate and arrive at root cause analysis (RCA).



If you structure your logs so that they can be queried, associating them with traces and other 
metrics becomes more natural and relevant. Restructure your logs to include custom metrics and 
use traces to identify where logging is more relevant. Once you bring the context of custom metrics 
and traces into your logs, you will have a holistic view of your application's state. You can then feed 
this data to tools that can perform further analysis.

4. Perform trend analysis: Having a lot of structured data is only the starting point of performance
tuning. You also need complete visibility on how each change a�ects the overall performance of
your system. To see this, you need a solution that can store historic data and perform trend analysis,
preferably with some ML/AI built-in to detect anomalies and alert you whenever the system does
something unexpected. After gathering enough data-points and identifying the relations between
them, you can even begin to automate some decisions.

5. Set up alerting and automation: An ideal alert system should be intelligent enough to distinguish
patterns of application behavior under normal and extreme circumstances. Getting bombarded with 
alerts that end up getting ignored is just as good as having no alert system at al

For setting up intelligent alerts, many tools integrate ML/AI to study the application behavior over 
time and detect anomalies. However, the best alerting system can only be built by carefully 
configuring critical parameters based on experience. For instance, if your disks are getting full 
frequently, you can set up alerting when disk utilization reaches 80 percent, and set up automated 
scripts to run when thresholds are breached, like archiving old data or clearing up old logs, cached 
files, etc. Understanding the system well enough to make these informed decisions comes from 
experience. However, with reports from monitoring solutions, these decisions can be made much 
more quickly, like archiving old data or clearing up old logs, cached files, etc.

Site24x7 has automated actions to not only mitigate a failure, like retrying failed jobs, but also to 
collect diagnostic information during abnormal circumstances, like memory dumps when usage 
is high. These actions make the job of DevOps teams easier, since they can attend to only 
critical events, and let the automation handle the rest.

Root Cause Analysis



Conclusion

You get to decide what level of observability you want in your system. Use your resources, 
instrument your metrics, and set up proactive alerting to correlate information across various silos to 
get the best information possible. In short, observability is neither a tool nor a mechanism, but more 
of a set of practices/culture that helps you to align your goals. 

About Site24x7

Site24x7 is a full stack monitoring solution that empowers IT operations and DevOps with 
AI-powered performance monitoring and cloud spend optimization. Its broad capabilities help 
quickly troubleshoot problems with end-user experience, applications, servers, public clouds, 
and network infrastructure. Site24x7 is a cloud o�ering from Zoho Corporation, which has 
o�ces worldwide, including the Netherlands, United States, India, Singapore, Japan, and
China. For more information about Site24x7, please visit http://www.site24x7.com/

About the Author

Ranjani Subramanian works as a Product Marketer at Site24x7. She 
is committed to generate meaningful and informative content that 
educates the readers. Her areas of interest revolves around 
application performance monitoring, digital experience 
management and end-user experience. While not at work, you can 
always find her talking nonchalantly about movies and Netflix. Ranjani PS 

Product Marketer


