
A Deep Dive into
Improving ASP.Net Core
Performance

https://www.site24x7.com/

What are we going to cover?

• Use Caching to Improve Performance

• Use Structs in lieu of Classes

• Use Asynchronous Programming to Improve Performance

• Minimize Virtual Calls

• Minimize or Reduce Allocations

• Minimize Large Object Allocations

• Enable Response Compression

• Pool HTTP connections with HttpClientFactory

• Optimize CPU Cache Usage

• Optimize Data Access

• Optimize Disk Access

• Other performance issues in ASP.NET Core

4

8

9

10

12

15

16

17

18

20

21

22

We’ll discuss the following points in the sections that follow:

A Deep Dive into Improving ASP.NET Core Performance | ��������� 3

A Deep Dive into Improving ASP.NET Core Performance | ���������

Performance is always important when building web applications, but it is especially important when using ASP.NET Core. The

framework has been designed from the ground up with performance in mind, and as such, provides several features and capabilities

that can help you improve the performance of your applications.

ASP.NET Core is a powerful web development framework,

 but like any tool, it has its own performance quirks that can trip

up even the most experienced developers.

In this article, we'll take a deep dive into ASP.NET Core

performance, examining some of the most significant

issues and how we can solve them. We'll also look at

some best practices that can help you avoid

performance bottlenecks in the first place.

Introduction

2

Cache Aggressively

Caching is one of the most important aspects of performance optimiza-
tion. By caching data, we can avoid expensive roundtrips to the data-
base or other data sources. In ASP.NET Core, you can cache your data in
several ways.

The easiest way to cache data is to use the in-memory cache provided

by the Microsoft.Extensions.Caching.Memory NuGet package that

adds an in-memory cache service for use in ASP.NET Core applications.

To use the in-memory cache service, add the following line to your

Program class:

Once you've added the memory cache service, you can inject an

IMemoryCache instance into your controllers and services using

constructor injection and use it to store and retrieve data from the

cache:

services.AddMemoryCache();

public class HomeController : Controller

{

 private readonly IMemoryCache _cache;

 public HomeController(IMemoryCache cache)

 {

 _cache = cache;

 }

}

A Deep Dive into Improving ASP.NET Core Performance | ��������� 4

You can now use the Set method of the IMemoryCache instance to store

data and retrieve data from the cache using the key used in the Set

method:

_cache.Set("key", "value"); // Store data in the cachevar data = _cache

["key"]; // Retrieve data from the cache var

You can use the following piece of code to configure sliding and abso-
lute configuration, set the cache priority and size of the cache and then
add data to the cache.

var cacheEntryOptions = new MemoryCacheEntryOptions()

 .SetSlidingExpiration(TimeSpan.FromSeconds(90))

 .SetAbsoluteExpiration(TimeSpan.FromSeconds(1200))

 .SetPriority(CacheItemPriority.Normal)

 .SetSize(1024);

_cache.Set(employeeListCacheKey, data, cacheEntryOptions);

You can use the TryGetValue method to check if the specified key is
available in the cache.

if (!cache.TryGetValue<string>

("myCacheKey", out string timestamp))

{

 cache.Set<string>("myCacheKey", DateTime.Now.ToString());

}

[ResponseCache(Duration = 60)]

public IActionResult Index()

{

 ViewData["myViewBagKey"] = "The current time is:" +

 DateTime.Now.ToString();

 return View();

}

A Deep Dive into Improving ASP.NET Core Performance | ��������� 5

You can register a callback method that would be called automatically
when an item is removed from the cache as shown in the code snippet
given below:

Besides storing and retrieving data from the in-memory cache, you can
also use it to monitor when items are added or removed from the cache.

MemoryCacheEntryOptions options =

new MemoryCacheEntryOptions();

options.AbsoluteExpiration = DateTime.Now.AddMinutes(1);

options.SlidingExpiration = TimeSpan.FromMinutes(1);

options.RegisterPostEvictionCallback(MyCacheCallback, this);

cache.Set<string>("myCacheKey", DateTime.Now.ToString(), options);

You can then specify the ResponseCache attribute on your action
methods and set appropriate headers to the cached responses.

Distributed Caching
The in-memory cache is great for caching data that does not need to be
persisted across application restarts. For data that does need to must be
persisted, you can use the distributed cache service provided by the
Microsoft.Extensions.Caching.Redis NuGet package. The Redis distribut-
ed cache stores cached data in a Redis database, which can be run locally
or hosted in the cloud. To use the Redis distributed cache, add the
following line to your ConfigureServices method:

services.AddDistributedRedisCache(options => { options.Configuration =

"localhost"; options.InstanceName = "SampleInstance"; });

Once you've added the Redis distributed cache service, you can inject an
IDistributedCache instance into your controllers and services using
constructor injection:

public class HomeController : Controller { private readonly

IDistributedCache _cache; public HomeController

(IDistributedCache cache) { _cache = cache; } }

A Deep Dive into Improving ASP.NET Core Performance | ��������� 6

Apps
DatabaseNode 3

Node 4

Node 2

Node 1

Distributed Caching

Output Caching
To improve ASP.NET Core performance, you should cache data
aggressively. By caching data, you can reduce the number of round
trips to the database and improve the response time of your web
application.You can write the following piece of code in your Program
class to enable response caching in your application:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers();

builder.Services.AddResponseCaching();

var app = builder.Build();

app.UseHttpsRedirection();

app.UseResponseCaching();

app.UseAuthorization();

app.MapControllers();

app.Run();

You can also configure response caching to specify the size limit,
maximum body size, and if the HTTP responses should be cached on
sensitive paths:

 services.AddResponseCaching(options =>

 {

 options.UseCaseSensitivePaths = true;

 options.MaximumBodySize = 1024;

 });

A Deep Dive into Improving ASP.NET Core Performance | ��������� 7

API API API

Cache IIS

Client

Use Structs in lieu of Classes
In the C# programming language, value and reference types' semantics are very different. A reference type resides on the heap and is passed by
reference, while a value type resides on the stack and is passed by value (e.g., the receiving method receives a copy of the whole object).

The cost of allocating and deallocating value types is lower than
reference types. You can avoid garbage collection overhead by using a struct when building a composite data structure with a few data
members and value semantics. Ideally, the instance size of a struct should be less than 16 bytes.

A Deep Dive into Improving ASP.NET Core Performance | ��������� 8

ClassesStructs ?
Object size is

small

Use Asynchronous Programming
You can leverage asynchronous programming to execute multiple
tasks concurrently without blocking the processing of other tasks. On
the contrary, synchronous programming, i.e., code written using the
synchronous programming model, blocks until a specific task is
completed.
The following code snippet shows how an async method can be
defined in C#:

public async Task<List<Employee>> GetEmployeeAsync()

{

 List<Employee> employees;

 using (var connection = new SqlConnection(connectionString)

 {

 await connection.OpenAsync();

 //Write your code here to read data from the database

 }

 return employees;

}

Asynchronous programming provides more flexibility than synchro-
nous programming and allows multiple operations to occur simulta-
neously without waiting for each other—making it ideal for applica-
tions that do not require immediate responses from users but still
need to perform many operations at once (such as image processing).

Asynchronous programming is a great way to keep your application
responsive by reducing the time required for the server to generate a
response, and thus keeping your application responsive. You can use
async/await methods to write asynchronous code that's easier to read
than traditional async programming. Async programming is used to
overcome the limitations of the synchronous programming model
and make your code more efficient and responsive.

Asynchronous programming is a more efficient way to handle
operations that take a long time. This is because the process doesn't
have to wait for the operation to complete before moving on. Instead,
it can work on other things while the operation runs in the back-
ground. This is especially important for web applications because
they are often
processing many requests at once and must handle each one as
quickly as possible.

A Deep Dive into Improving ASP.NET Core Performance | ��������� 9

Virtual calls are expensive because they require a bit of extra processing
by the computer in order to work. When you make a virtual call, the
runtime has to look up the method in the virtual table, and then jump to
that code. This takes time, and it can accumulate if you're making a lot
of calls. You can eliminate such virtual calls using interfaces.

Virtual approaches need additional resources. A virtual table known as
vtable maps all the virtual methods of a class. This table lists all the
virtual methods defined in a class. Virtual methods may be slow since
the runtime must verify the object's type every time they're called.
When you call a virtual method on an object, the runtime searches the
vtable for metadata related to the virtual methods of the class to which
the object belongs.

Interfaces don't have virtual tables, so the runtime doesn't have to do
any extra work when you make a call through an interface. Additionally,
you can make your methods static to avoid using virtual methods. Now,
consider the following piece of code that takes advantage of virtual
methods to implement runtime polymorphism. Runtime polymorphism
(also known as Dynamic Method Dispatch or dynamic binding) resolves
the call to an overridden method only at runtime.

public abstract class Shape
{
 protected virtual void Draw()
 {
 Console.WriteLine("Draw method of the Shape class called.");
 }
}
class Circle : Shape
{
 protected override void Draw()
 {
 Console.WriteLine("Draw method of the Circle class called.");
 }
}
class Rectangle : Shape
{
 protected override void Draw()
 {
 Console.WriteLine("Draw method of the Rectangle class called.");
 }
}

Minimize Virtual Calls

A Deep Dive into Improving ASP.NET Core Performance | ��������� 10

public interface IShape
{
 protected void Draw()
 {
 Console.WriteLine("Draw method of the Shape class called.");
 }
}
class Circle : IShape
{
 public void Draw()
 {
 Console.WriteLine("Draw method of the Circle class called.");
 }
}

class Rectangle : IShape
{
 public void Draw()
 {
 Console.WriteLine("Draw method of the Rectangle class called.");
 }
}

You can replace the preceding code listing with the one that follows:

Using interfaces, you can simulate the same behaviour but sans the overhead cost of tables.

A Deep Dive into Improving ASP.NET Core Performance | ��������� 11

Minimize or Reduce Allocations
When it comes to improving performance, one area that is often
overlooked is reducing allocations. Allocations are a necessary part of
any application, but they can have a significant impact on performance
if not managed properly.

One advantage of Span<T> over arrays is that it doesn't require copying
data when performing operations such as filtering or mapping.
Span<T> is defined as a struct as shown in the code snippet given
below:

Use the Span type for operations that don't require
copying data
The Span type was introduced in .NET Standard 2.0 and is available in
ASP.NET Core 2.0 and above. It embodies a contiguous region of
memory, and can be used as an alternative to arrays or List<T>.

The following code snippet shows how you can leverage Span<T> to
extract a slice of two elements from an array that comprises prime
numbers:

public readonly ref struct Span<T>
{
 internal readonly
 ByReference<T> _pointer;
 private readonly int _length;
 //Other members
}

int[] primes = new int[] { 1, 2, 3, 5, 7, 11 };
Span<int> slicedArray = new Span<int>(primes, 1, 2);
foreach(int i in slicedArray)
{
 Console.WriteLine(i);
}

A Deep Dive into Improving ASP.NET Core Performance | ��������� 12

There are a few ways to reduce allocations in ASP.NET Core
applications:
 • Use the Span<T> type for operations that don't require
 copying data.
 • Avoid using async methods unnecessarily.
 • Use ArrayPool<T> for pooled arrays.
 • Use String.Create to create strings with zero allocation
 overhead.
 • Use StringBuilder for string concatenation.
 • Avoid LINQ methods that cause unnecessary allocations.

It is worth taking a closer look at each of them one at a time.

If the async keyword is used in the code, the compiler generates a state
machine that allows the method to be executed asynchronously
instead of synchronously. Since using this state machine incurs a
significant amount of performance overhead, it is advised to use it only
when necessary.

In general, you should avoid using async methods unless they're
actually going to perform an asynchronous operation. For example, the
following code uses an async method to perform a synchronous
operation:

The ArrayPool class was introduced in .NET Standard 2.0 and is avail-
able in ASP.NET Core 2.0 and above. It allows arrays to be pooled and
reused, which can reduce allocations significantly.

For example, consider the following code that allocates an array to
store a list of numbers:

Avoid using async methods unnecessarily Use ArrayPool for pooled arrays

This code will allocate a new array every time it's called. We can avoid
this by using ArrayPool:public async Task<int> Add(int x, int y)

{
 return x + y; //this operation is synchronous
}

public Task Add(int x, int y)
{
 return Task.FromResult(x + y);
}

List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };

int[] numbersArray = ArrayPool.Shared.Rent(numbers.Count); //rents

an array from the pool

numbers.CopyTo(numbersArray); //copies the data into the array

ArrayPool.Shared.Return(numbersArray); //returns the array to

the pool

 List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };
int[] numbersArray = numbers.ToArray(); //allocates a new array

A Deep Dive into Improving ASP.NET Core Performance | ��������� 13

This code will incur the overhead of the state machine without any
benefits. It would be more efficient to just remove the async keyword as
shown in the code snippet given below:

String.Create is a method that allocates memory on the managed heap
to store a sequence of characters. The following code snippet shows
how you can use String.Create in C# to create string objects:

The StringBuilder class is used to efficiently concatenate strings. It
avoids allocations by using a mutable buffer that can be reused.

For example, consider the following code that concatenates a list of
strings:

This code will allocate a new string every time it's called. We can avoid
this by using StringBuilder:

Use String.Create to create strings without any
allocation overhead

Avoid LINQ methods that cause unnecessary
allocations

Use StringBuilder for string concatenation
Some LINQ methods, such as Select and Where, will cause unneces-
sary allocations if the data type of the source sequence is not IEnumer-

This code will allocate a new List, even though the original List contains
all the data we need. We can avoid this allocation by using the AsEnu-
merable extension method:
List numbers = new List { 1, 2, 3, 4, 5 };

char[] buffer = { 'a', 'b', 'c', 'd', 'e' };
string data = string.Create(buffer.Length, buffer, (x, y) => {
 for (int i = 0; i < x.Length; i++)
 x[i] = y[i];
});

List strings = new List { "a", "b", "c" };
string result = string.Concat(strings); //allocates memory for a new
string instance

List<int> numbers = new List { 1, 2, 3, 4, 5 };
//The following piece of code will allocate a new list
IEnumerable evenNumbers = numbers.Where(n => n % 2 == 0);

//The following piece of code will not allocate a new list
IEnumerable evenNumbers = numbers.AsEnumerable().Where
(n => n % 2 == 0);

List strings = new List { "a", "b", "c" };
StringBuilder builder = new StringBuilder();
foreach (string s in strings)
 {
 builder.Append(s);
 }
string result = builder.ToString(); //returns the concatenated string

A Deep Dive into Improving ASP.NET Core Performance | ��������� 14

var myArrayPool = ArrayPool<int>.Create(5, 10);
var myRentedArray = myArrayPool.Rent(5);

Minimize Large Object Allocations
The Garbage Collector (GC) divides objects into two categories – small objects and large objects. While the former is stored on the Small Object Heap
(SOH), the latter is stored in the Large Object Heap (LOH). Large objects are those that have a size greater than or equal to 85,000 bytes. An object
allocation request of 85,000 bytes or more is allocated to the large object heap by the runtime.

Note that garbage collection for large objects is a costly operation. If you are interested in reducing large object allocations, you can leverage pool
buffers using an ArrayPool<T> and cache large objects that are often used. On frequent code paths, you should avoid getting locks on short-lived
objects, and you should try to avoid creating too many short-lived objects along these paths.

A Deep Dive into Improving ASP.NET Core Performance | ��������� 15

Here are a few best practices in this regard:
 • Consider caching large objects to save costly allocations.
 • It would help if you took advantage of ArrayPool<T> to store large arrays.
 • Avoid allocating large objects on hot code paths.
 • Optimize code to split large collections into multiple smaller collections to avoid objects being created in the large object heap.
 • Use MemoryPool<T> to reduce allocations.

The following code snippet shows how you can use ArrayPool<T> in C#:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddResponseCompression();

var app = builder.Build();

//Usual code to register services, dependencies, etc

app.UseResponseCompression();

app.MapGet("/", () => "Demonstrating Response Compression.");

app.Run();

Enable Response Compression
ASP.NET Core uses a middleware component to automatically compress server responses. This can greatly improve performance, especially over slow

network connections. Enabling compression is easy and only requires a few lines of code:

Compression will now be enabled for all responses from your ASP.NET Core application.

A Deep Dive into Improving ASP.NET Core Performance | ��������� 16

services.AddHttpClient();

builder.Services.AddHttpClient((httpClient) => {

httpClient.MaxConnectionsPerEndpoint = 20; }); }

Pool HTTP connections with HttpClientFactory
HttpClientFactory is a new feature in ASP.NET Core that makes it easy

to inject a properly configured HttpClient instance into your

controllers and services. By default, HttpClient instances are not

pooled, which means that each time you create a new one, it will open

a new connection to the server. If you make multiple requests to the

same server, this can be costly as far as application performance is

concerned.Fortunately, HttpClientFactory supports connection

pooling out of the box. When you configure HttpClientFactory to use a

pooling policy, it will reuse existing connections instead of creating

new ones. This reduces the number of connections you need to be

opened and closed in your application, thus improving performance.-

To configure HttpClientFactory to use a pooling policy, you first need

to add the Microsoft.Extensions.Http NuGet package to your project.

Then, you can use the AddHttpClient method on the IServiceCollec-

tion object as shown in the code snippet given below:

This will configure HttpClientFactory to use the default pooling policy,

which is to keep a maximum of 10 connections open per endpoint. You

can customize this by passing in an Action to the AddHttpClient

method:

A Deep Dive into Improving ASP.NET Core Performance | ��������� 17

Optimize CPU Cache Usage
You can leverage CPU cache to improve the performance of your

application. When you’re accessing data from main memory, you can

take advantage of the CPU cache to minimize memory latency. internal class Program

 {

 static Stopwatch stopWatch = new Stopwatch();

 const int LENGTH = 1000;

 static int[] integerArrayA = Enumerable.Repeat(1,

 LENGTH).ToArray();

 static int[] integerArrayB = Enumerable.Repeat(1,

 LENGTH).ToArray();

 private static void ScenerioA()

 {

 stopWatch.Restart();

 for (int i = 0; i < LENGTH; i++)

 {

 integerArrayA[i] *= 10;

 integerArrayB[i] *= 10;

 }

 stopWatch.Stop();

 TimeSpan ts = stopWatch.Elapsed;

 Console.WriteLine($"Scenerio A:

 {ts.TotalMilliseconds.ToString()} ms");

 }

A Deep Dive into Improving ASP.NET Core Performance | ��������� 18

Here are a few points that should help you to make the most of the

CPU cache:

 • Utilize linear data structures based on access patterns

 instead of algorithms and data structures with irregular

 memory access patterns.

 • Ensure that the data types are small and that it is

 structured in a way to prevent gaps in the alignment.

 • Improve spatial locality by making the most of each cache

 line after mapping it to a cache.

We can increase data locality and reduce waste of CPU cycles by

optimizing our code. Let us understand this with an example. Assume

that there are two integer arrays and the elements of both these arrays

have been initialized to 1. Now, suppose there are two methods named

ScenerioA and ScenerioB that multiplies the value of each element of

these two arrays by 10 and stores the result in those elements.

While the method ScenerioA uses one for loop to iterate and reinitialize

the elements of these two arrays, the method ScenerioB uses separate

loops to do the same. Consider the following piece of code that

illustrates what we just discussed:

 private static void ScenerioB()

 {

 stopWatch.Restart();

 for (int i = 0; i < LENGTH; i++)

 {

 integerArrayA[i] *= 10;

 }

 for (int i = 0; i < LENGTH; i++)

 {

 integerArrayB[i] *= 10;

 }

 stopWatch.Stop();

 TimeSpan ts = stopWatch.Elapsed;

 Console.WriteLine($"Scenerio B:

 {ts.TotalMilliseconds.ToString()} ms");

 }

 static void Main(string[] args)

 {

 ScenerioA();

 ScenerioB();

 Console.Read();

 }

 }

A Deep Dive into Improving ASP.NET Core Performance | ��������� 19

When you execute the preceding code listing, the time taken to run

both scenarios will be displayed:

Figure 1

Note that the time taken by ScenerioA is almost double the time taken

by the method ScenerioB to execute. The reason is that since the

collections we've used is an array, the elements of this collection will be

stored adjacent to one another. In case of ScenerioB, because most of

the data is in the cache lines, it would consume less time to read the

data from the element, perform a simple computation and then store

the result back.

In case of ScenerioA, the elements of the first array will be stored in the

cache. However, the data will not be available in the cache when your

program attempts to access the second array. This would result in

several cache misses and hence the result.

Optimizing Data Access
Here are a few best practices in this regard:

 • Reduce the number of HTTP calls, i.e., network round trips.

 • Instead of sending multiple calls to the server, consider
 retrieving the data in one or two calls and aggregating the data if
 required.

 • Use caching for data that is stale.

 • Avoid obtaining the data in advance.

services.AddDbContextPool<EmployeeContext>(options =>

options.UseSqlServer(connection));

A Deep Dive into Improving ASP.NET Core Performance | ��������� 20

To turn on DbContextPool, you can write the following piece of code in your

Program class:

Best Practices in Entity Framework Core for Improving Performance

 • Ensure that your DataContext Represents a Single Unit of Work

 • Disable Change Tracking if you’re only reading data

 • Use Projections to Read Only the Data You Need

 • Use DbContextPool to improve EF Core performance
 and scalability

Optimizing Disk Access
In addition to optimizing data access, it is also important to optimize I/O operations. One way to do this is to use asynchronous programming techniques
when possible. By using asynchronous programming, you can avoid blocking threads and improve overall performance. You can also improve I/O
performance by leveraging buffering when reading from or writing to files in the file system. Buffering allows you to read or write larger chunks of data at
a time, which can significantly improve performance.

The following code snippet illustrates how you can use buffered stream in C#:

services.AddDbContextPool<EmployeeContext>(options =>

options.UseSqlServer(connection));

A Deep Dive into Improving ASP.NET Core Performance | ��������� 21

Other performance issues in ASP.NET Core

Static files
ASP.NET Core performance can be affected by how your web server
serves static files. By default, IIS will serve static files from your
ASP.NET Core application using its own static file handler rather than
letting ASP.NET Core handle them directly. This can impact perfor-
mance because IIS's static file handler is not as efficient as ASP.NET
Core's static file middleware.

There are a few common performance issues that can occur when
using ASP.NET Core. One issue is when the web server becomes
overloaded and cannot process requests quickly enough. This can
often happen during high traffic times or if there is a lot of data being
processed. Another common issue is when the database server is not
configured correctly and is not able to handle the load of requests. This
can often lead to slow response times or even timeouts.

Hosting Model
One common issue that can impact ASP.NET Core performance is
using the wrong hosting model. For example, if you're using IIS as your
web server, you should make sure that you're using the IIS integrated
pipeline mode rather than the legacy mode. This will ensure that your
ASP.NET Core application benefits from all of the performance
improvements in IIS such as kernel-mode caching and CPU limits.

Third-party dependencies
If your application is making too many calls to external services or
libraries, it can negatively impact performance. To mitigate this, you
should try to use async patterns wherever possible so that your applica-
tion can continue to process requests even while waiting on a response
from an external dependency.

A Deep Dive into Improving ASP.NET Core Performance | ��������� 22

.Net
Core

Conclusion
ASP.NET Core is a high-performance framework and can give you the best application performance. However, there are some commonperformance
issues that you need to be aware of when
developing a web application that leverages ASP.NET Core.

There are a number of ways to improve the performance of an ASP.NET Core application. By implementing the techniques discussed here, you can
ensure that your ASP.NET Core application runs faster and more
efficiently.

About Site24x7

Site24x7 offers AI-powered full stack monitoring for DevOps and IT operations with telemetry data collected from servers, containers, networks, cloud,

database, applications and provide AI-powered full stack observability. Additionally, Site24x7 can track end user experience via synthetic and real user

monitoring capabilities. DevOps & IT teams can use these capabilities to troubleshoot and resolve application downtime and performance issues,

infrastructure issues and better manage the digital user experience. For more information on Site24x7, please visit www.Site24x7.com |

Email: eval@site24x7.com

Get Quote Request demo

Copyright © Zoho Corporation Pvt. Ltd. All rights reserved. You may not copy, reproduce, distribute, publish, display, perform, modify, create derivative works, transmit, or
in any way exploit the material without Zoho's express written permission. Site24x7 logo and all other Site24x7 marks are trademarks of Zoho Corporation Pvt. Ltd.

https://www.site24x7.com/schedule-demo.html?src=asp-net-whitepaper
https://site24x7.com/custom-pricing.html?src=multi-cloud-whitepaper?src=asp-net-whitepaper
https://www.site24x7.com/?src=multi-cloud-whitepaper?src=asp-net-whitepaper

